Gmres on (nearly) Singular Systems
نویسنده
چکیده
We consider the behavior of the GMRES method for solving a linear system Ax = b when A is singular or nearly so, i.e., ill conditioned. The (near) singularity of A may or may not affect the performance of GMRES, depending on the nature of the system and the initial approximate solution. For singular A, we give conditions under which the GMRES iterates converge safely to a least-squares solution or to the pseudoinverse solution. These results also apply to any residual minimizing Krylov subspace method that is mathematically equivalent to GMRES. A practical procedure is outlined for efficiently and reliably detecting singularity or ill conditioning when it becomes a threat to the performance of GMRES.
منابع مشابه
GGMRES: A GMRES--type algorithm for solving singular linear equations with index one
In this paper, an algorithm based on the Drazin generalized conjugate residual (DGMRES) algorithm is proposed for computing the group-inverse solution of singular linear equations with index one. Numerical experiments show that the resulting group-inverse solution is reasonably accurate and its computation time is significantly less than that of group-inverse solution obtained by the DGMRES alg...
متن کاملA Modiication to the Gmres Method for Ill-conditioned Linear Systems
This paper concerns the use of a method for the solution of ill-conditioned linear systems. We show that the Generalized Minimum Residual Method (GMRES) in conjunction with a truncated singular value decomposition can beused to solve large nonsymmetric linear systems of equations which are nearly singular. Error bounds are given for the right s i n g u l a r v ectors and singular values compute...
متن کاملRight-Hand Side Dependent Bounds for GMRES Applied to Ill-Posed Problems
In this paper we apply simple GMRES bounds to the nearly singular systems that arise in ill-posed problems. Our bounds depend on the eigenvalues of the coefficient matrix, the right-hand side vector and the nonnormality of the system. The bounds show that GMRES residuals initially decrease, as residual components associated with large eigenvalues are reduced, after which semi-convergence can be...
متن کاملTensor-Krylov Methods for Solving Large-Scale Systems of Nonlinear Equations
This paper develops and investigates iterative tensor methods for solving large-scale systems of nonlinear equations. Direct tensor methods for nonlinear equations have performed especially well on small, dense problems where the Jacobian matrix at the solution is singular or ill-conditioned, which may occur when approaching turning points, for example. This research extends direct tensor metho...
متن کاملBreakdown-free GMRES for Singular Systems
GMRES is a popular iterative method for the solution of large linear systems of equations with a square nonsingular matrix. When the matrix is singular, GMRES may break down before an acceptable approximate solution has been determined. This paper discusses properties of GMRES solutions at breakdown and presents a modification of GMRES to overcome the breakdown.
متن کامل